
第 1 页 / 共 17 页

第 2 页 / 共 17 页

第 3 页 / 共 17 页
_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 4 页 / 共 17 页
_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 5 页 / 共 17 页

第 6 页 / 共 17 页

第 7 页 / 共 17 页

第 8 页 / 共 17 页

第 9 页 / 共 17 页
_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 10 页 / 共 17 页
_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 11 页 / 共 17 页
试题及答案_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 12 页 / 共 17 页
试题及答案_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 13 页 / 共 17 页
试题及答案_第1页_学霸英雄_www.xuebayingxiong.com.png)
第 14 页 / 共 17 页
试题及答案_第2页_学霸英雄_www.xuebayingxiong.com.png)
第 15 页 / 共 17 页

第 16 页 / 共 17 页

第 17 页 / 共 17 页

【高分复习笔记】同济大学数学系《高等数学》(第7版)复习资料及重点总结
【高分复习笔记】同济大学数学系《高等数学》(第7版)复习资料及重点总结 为了帮助大家在期末考试中取得高分,整理了同济大学数学系《高等数学》(第7版)的重点复习资料,希望对大家有所帮助。 本复习资料主要围绕课程的核心内容展开,重点总结了以下几个方面: 一、微积分基本概念 《高等数学》的开篇部分对极限、连续、导数等基本概念进行了详细的讲解。务必熟练掌握极限的定义、判别法及应用,这是理解导数的基础。 重点理解连续函数的性质,例如,判断函数在某个区间是否连续。 二、导数及其应用 导数是高等数学的核心内容之一。 熟练掌握导数的定义、求导公式(包括幂函数、指数函数、三角函数等)以及导数的应用,例如,求函数的极值、最值,以及函数的单调性。 务必掌握导数的链式法则,它是解决复杂函数的导数问题的关键。 三、积分学 对不定积分和定积分的概念、积分公式以及积分的应用要有所了解。 掌握积分的计算方法,特别是利用换元积分法和分部积分法。 重点关注定积分的几何意义及在求解面积、体积等问题中的应用。 四、重要公式总结 《高等数学》中包含大量的重要公式,需要重点记忆和理解。 例如,幂函数的导数公式、指数函数的导数公式、三角函数的导数公式、积分公式以及各种函数的微分和积分公式等。 五、解题技巧 在复习过程中,多做练习题,并分析错题,掌握解题技巧。 注意审题,抓住题目的关键信息,选择合适的公式和方法进行解答。 培养良好的数学思维能力和解题习惯。 这份复习资料希望能帮助大家在复习中有所提升,在考试中取得理想的成绩!
展开
高等数学
2025-04-19
36次阅读